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Gauge Theories: Geometry and Cohomological
Invariants
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We develop a geometrical structure of the manifolds G and G Ã associated,
respectively, with gauge symmetry and BRST symmetry. Then, we show that
( G Ã, z Ã, G ), where zÃis the group of BRST transformations, is endowed with the
structure of a principal fiber bundle over the base manifold G . Furthermore, in
this geometrical setup, due to the nilpotency of the BRST operator, we prove
that the effective action of a gauge theory is a BRST-exact term up to the classical
action. Then, we conclude that the effective action where only the gauge symmetry
is fixed is cohomologically equivalent to the action where the gauge and the
BRST symmetries are fixed.

1. INTRODUCTION

BRST symmetry was discovered independently by Becchi et al. (1974,
1978) and Tyutin (1975) as an invariance of the effective Yang±Mills action.

This symmetry is the clue to the proof of renormalizabilty of a gauge theory

and the starting point for the algebraic determination of chiral anomalies

(deWitt and Stora, 1984). It was also realized that BRST invariance in quantum

field theories is a fundamental requirement for a consistent definition of
theories with local gauge invariance (Baulieu, 1985). Indeed, in an invariant

gauge theory the gauge degrees of freedom are not physical and must be

eliminated. This is done by the usual gauge-fixing procedure in the perturba-

tive Lagrangian appoch. One adds to the gauge-invariant Lagrangian a gauge-

breaking term rendering the gauge field free propagator well defined and

leading to the decoupling of gauge degrees of freedom from the physical
ones. This decoupling is guaranteed by the requirement of BRST invariance

of the effective action. Hence, gauge symmetry (and its subsequent BRST
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gauge fixing) gives us an unexpected freedom in defining equivalent formula-

tions of the same physical theory.

In particular, in their original formulation, topological field theories were
constructed to have the global symmetry that arises as the BRST symmetry

of an appropriate quantum field theory (Witten, 1982). This formulation

allows for the possibility of different gauge choices, and these theories are

then seen as specific gauge fixings of a higher theory (Schwarz, 1978). So,

at the quantum level gauge invariance is broken and it is the BRST invariance

which takes place.
By using the nilpotency of the BRST operator we have shown that

BRST symmetry cannot be fixed in any way, and any ª BRST-fixing conditionº

is cohomologically equivalent to the gauge-fixing one (Kachkachi and Kach-

kachi, 1994).

In this paper we develop a geometrical structure of the manifolds G and

G Ã. Then we show that the manifold G is a principal fiber bundle over the
base space-time manifold M whose structural group is the gauge transforma-

tions group. Moreover, we establish that ( G Ã, z Ã, G ), where z Ãis the group

of BRST transformations, is a principal fiber bundle over G . In this geometrical

formalism we associate gauge-fixing conditions F1(A ) 5 0 and F2(A ) 5 0,

respectively, to surfaces S F1 and S F2 (over the manifold G ), which are con-
nected by a gauge transformation, and we associate BRST-fixing conditions

G1(A, C ) 5 0 and G2(A, C ) 5 0, respectively, to surfaces S G1 and S G2 (over

the manifold G Ã), which are connected by a BRST transformation. Furthermore,

we establish a cohomological equivalence of a gauge-fixing condition and a

BRST-fixing one. Then we get the cohomological equivalence of the effective

action and an ª effective action whose BRST symmetry is fixed.º This is
interpreted by the fact that the BRST symmetry does not impose any more

conditions on the theory, and equivalently is always possible (by an appro-

priate BRST transformation) to go back to the initial gauge condition. These

results allow us to conclude that the effective action is the sum of the classical

action and a BRST-exact term.

The outline of this paper is as follows. In Section 2 we give the fiber
bundle structures of the manifolds G and G Ãby introducing a principal fiber

bundle (P, G, M ). We show also that a gauge field associated to a connection

over P is a local section of the fiber bundle ( G , z , M ). By imposing a gauge-

fixing condition F(A) 5 0, which is represented by a constant function F on

the fibers of the fiber bundle G , the gauge symmetry is fixed. Then we have

to deal with the effective action that encodes the BRST invariance and to
consider the geometrical structure of the manifold G Ã. This enables us to

define the principal fiber bundle ( G Ã, z Ã, G ) and to identify one of its local

sections with the BRST operator Q. In Section 3, by using this geometrical

interpretation of the BRST operator, we get the equivalence of two BRST-
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fixing conditions defined on the manifold G Ãand we prove that a constraint

on G is cohomologically equivalent to a constraint on G Ã, that is, a G Ãconstraint

is equal to a G constraint plus a Q-commutator term. This cohomological

equivalence enables us to prove that the BRST-fixing action is equivalent to
the effective action, and hence, the fixation of BRST invariance only adds

a Q-commutator term to the effective action. It only changes the gauge-fixing

term (does not affect the physical degrees of freedom) and then the BRST

symmetry is always present in the effective action. In Section 4 we illustrate

our results by the case of Yang±Mills theories and we stress that our formalism

is general for any gauge theories. Section 5 is devoted to our conclusion and
open problems.

2. FIBRATION OF THE MANIFOLDS G AND G Ã

2.1. Gauge Fields and Gauge Transformations

We consider a G-principal fiber bundle (P, G, M ) over the manifold M,
with G a compact Lie group, endowed with a local trivialization (Ui , w i)

such that, for each i, the application t i : M ® P given by t i ( p) 5
w 2 1

i ( p, e), where e is the unit element of G, defines a local section of the

fiber bundle (P, G, M ). Next, we introduce a connection v on the fiber bundle

P as follows:

A i 5 t *i v (2.1)

where (Ai) are Lie G-valued one-forms over the open sets (Ui) and t *i is the

pullback of t i. The one-forms (Ai) satisfy the following relations (Schwarz,

1978):

Aj 5 C 2 1
ij A i C ij 1 C 2 1

ij d C ij (2.2)

with C ij : Ui ù U j ® G are transition functions of the fiber bundle (P, G,
M ). Reciprocally we have the following result (Nakahara, 1990):

Proposition 1. If the one-forms Ai , which are Lie G-valued and defined

on the open set U i , satisfy equation (2.2), then there exists one and only one

connection v satisfying the relation Ai 5 t *i v over Ui.

Consequently we have the following:

Corollary 1. Let us consider two local sections t 1 and t 2 such that

t 2( p) 5 t 1( p)g( p) (2.3)

where g: M ® G. Then the associated local forms A1 and A2 satisfy
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A2 5 g 2 1A1g 1 g 2 1dg (2.4)

However, in the geometrical interpretation in terms of the fiber bundle struc-

ture, gauge fields denoted Ai are viewed as one-forms over the base manifold

M and satisfy a relation analogous to equation (2.4). Moreover, the gauge

transformation group z is the group of vertical automorphisms w over the

fiber bundle (P, G, M ) that satisfy the base condition

w ( p) 5 p (2.5)

for some p. In other words, a gauge transformation is an automorphism which

commutes with the action of G,

w (gp) 5 g w ( p) (2.6)

Locally, gauge transformations are specified by the following proposition

(Nakahara, 1990):

Proposition 2. A gauge transformation f is completely determined by a

family of applications ( a i) such that

a i 5 w i f t i (2.7)

where w i P C ` (Ui , G) and a j 5 ad( C 2 1
ij ) a i. Here ad is the adjoint representa-

tion of the group G and ( C ij ) are transition functions of (P, G, M ). Recipro-

cally, a family ( a i) of applications satisfying equation (2.7) defines a
gauge transformation

f 5 ( t i p )[( a i p ) w i] (2.8)

over p 2 1(Ui). Moreover, by expressing explicitly f * v , we get the gauge
transformation action f on a connection v and then, by using the relation

(2.1), we express its action on the gauge field A as follows (Nakahara, 1990;

Birmingham et al., 1991)

A 8 5 f 2 1Af 1 f 2 1df (2.9)

Then, the gauge transformation group is realized on the the manifold M as

diffeomorphism group.

2.2. The Fiber Bundle ( G , z , M )

The manifold G can be equipped with a principal fiber bundle structure
over the manifold M whose orbits are gauge orbits and whose structural

group is the gauge transformations group. Indeed, we define the canonical

projection of G over M by

p Ä : G ® M

A(x) ® p Ä (A(x)) 5 x (2.10)
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and we consider the gauge field as a map: M ® G and as a local section of

the fiber bundle ( G , z , M ). Equation (2.9) shows also that the action of z on

G is free (does not have any fixed point). Moreover, G is locally trivial: let
(Ui , w i) be a local trivialization of the fiber bundle P. Then, the family

( p Ä 2 1(Ui), w Ä i) is a local trivialization of G such that

w Ä i: p Ä 2 1(Ui) ® U i 3 z

A ® ( p Ä (A ), w Ä i (A )) (2.11)

where w Ä i (A ) is the matricial representation of the gauge field in LieG, i.e.,

A 5 A m (x) dx m 5 A a
m (x)T a dx m (2.12)

and T a is a LieG basis. Moreover, we define the transition functions of the

fiber bundle ( G , z , M ) as the applications

C Ä ij: Ui ù Uj ® z

x ® Ad( C 2 1
ij (x)) (2.13)

where Ad is the adjoint representation of LieG. Then we consider a system

(A1, . . . , An) of gauge fields on the manifold G (which represents the gauge

orbits) such that

" A P G $ (m i)/A 5 mi A
i (2.14)

and hence, (x m , mi) defines a system of local coordinates on G .

2.3. BRST Transformations

The BRST quantization of gauge theories is stated by introducing a

gauge-fixing term in the Lagrangian to get the free propagators of gauge

fields well defined. This fixing term implies the presence of nonphysical
degrees of freedom in the theory, but they are canceled by ghosts fields.

Then the effective action is given by

Seff 5 S0 1 SFP 1 SGF (2.15)

where S0, SGF, and SFP are, respectively, the classical action, the gauge-fixing
action, and the ghost action. However, even if the gauge invariance is fixed

at this level, another symmetry of the effective action appears, that is, the

BRST symmetry generated by the nilpotent operator Q. This operator can

be decomposed as follows:

Q 5 d 1 d (2.16)

such that Q 2 5 0 and d 2 5 d 2 5 d d 1 d d 5 0. Here d is the exterior

derivative over the manifold M (or section of G ) and d is the restriction of
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Q to the fibers of G . Furthermore, the cohomological groups associated to

the operators d and d are given by (Kachkachi and Kachkachi, 1994)

H 0(d ) 5 C ` 1 G
P0 2

H0( d ) 5 1 kerd
Im d 2 5 C ` ( G ) (2.17)

where P0 is a gauge orbit. The BRST transformations of collections (A, C )

are defined as (Birmingham et al., 1991)

[Q, A] 5 C

[Q 2, A] 5 {Q, [Q, A]} 5 2 D f (2.18)

where D f is the covariant derivative of a gauge parameter f . Locally, a

BRST transformation is considered as a gauge transformation where the

gauge parameter is replaced by an anticommuting one. Also, we can see

from the splitting (2.16) of the BRST operator Q that the group of gauge
transformations is a subgroup of the BRST transformation group. We will

see in Section 2.5 that the group of BRST transformations z Ãis the structural

group of the fiber bundle ( G Ã, z Ã, G ).

2.4. Geometrical Interpretation of Ghost Fields

Let us consider a chart r defined by

r: U 3 V ® P

(x, y) ® r(x, y) 5 w 2 1
i (a(x), g( y)) (2.19)

where a: M ® M and g: G ® G, and let us consider a connection v on the

fiber bundle (P, G, M ) which is expressed on the chart r as follows:

v (x, y) 5 ad(g( y) 2 1)A m (x) dx m 1 g 2 1( y) - a g( y) dy a

Its vertical part can be rewritten as

C( y) 5 C a ( y) dy a

C a ( y) 5 g( y) 2 1 - a g( y) (2.20)

Since C a ( y) P LieG, it can be written as C a ( y) 5 C a
a ( y)T a. At this level,

we identify the usual FP fields with the real one-forms C a( y) 5 C a
a dy a and

the ghost field C with its covariant derivative,
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C m 5 2 D m C

Hence, due to the fact that the operator Q is the exterior derivative on the

manifold G , the ghost field appears as a Q-exact term on the fiber bundle

( G , z , M ), i.e., C 5 [Q, A], which expresses the BRST transformation of
the field A. Here we note that, because

H 0(Q) 5 {equivalence classes of physical observables}

5 C ` 1 G
P0 2 5

ImQ

kerQ

the introduction of ghost fields in the theory does not affect the physical

observables.

2.5. Fiber Bundle Structure of the Manifold G Ã

As we have noted before, the BRST operator Q is the exterior derivative
on the manifold G and can be written locally in the form

Q 5 dm i
-

- mi

, [Q, mi] 5 dmi (2.21)

The manifold G Ãis defined as the set of all collections (A, C ) (over which

the effective action is BRST invariant) and then can be endowed with a fiber

bundle structure.

Proposition 3. The manifold G Ãis a principal fiber bundle over the
manifold G whose structural group is the BRST transformation group. Then,

the canonical projection of G Ãover G is defined by

P Ã: G Ã® G

(A, C ) ® P Ã(A, C ) 5 A (2.22)

Also, Q and C are local sections of the fiber bundle ( G Ã, z Ã, G ). Indeed, the

local trivialization of G Ãis defined by the family ( P Ã2 1( P Ä 2 1(U i)), w Ãi ) such that

w Ãi: P Ã2 1( P Ä 2 1(Ui )) ® P Ä 2 1(Ui ) 3 z Ã

(A, C ) ® (A, w Ãi ( C )) (2.23)

where w Ã( C ) is the matricial representation of the ghost field in the Lie algebra

of the group z . Then, the transition functions of the fiber bundle G Ã, denoted

by C Ãij, are defined as follows:

C Ãij : P Ä 2 1(Ui ) ù P Ä 2 1(Uj ) ® z

A ® ad( C Ãij(A )) (2.24)

where ad is the adjoint representation of the group z .
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3. COHOMOLOGICAL EQUIVALENCE BETWEEN G AND G Ã

In geometrical language the quantization of gauge theories, which is

done at the first step by breaking the gauge symmetry, is equivalent to

choosing only one representative from each gauge equivalent class, i.e.,
picking out a point from each gauge orbit and considering a constraint surface

S F on the manifold G defined by the equation

F (A ) 5 0 (3.1)

with F a map G ® LieG. This is equivalent to choosing a local section of

the fiber bundle ( G , z , M ) which is in our setting a gauge-fixing condition.

This implies that the surface S F meets every orbit in one and only one point.

This assertion induces the following lemma:

Lemma 1. All gauge-fixing conditions are equivalent and then two con-

straint surfaces are related by a gauge transformation. Indeed, let us consider

S F1 and S F2. Since F1 and F2 are local sections of G , then there exists an
element of the structural group z of the fiber bundle ( G , z , M ) connecting

the two surfaces, i.e., $ f P z / S F2 5 f * S F1.

In the same way, we define a BRST-fixing condition on G Ãby the equation

G (A, C ) 5 0 (3.2)

where G: G Ã® Lie z Ã. This is associated to a local section on G Ã. Furthermore,

we associate to equation (3.2) a G-constraint surface S ÃG defined on the

manifold G Ã. Then, using the fibration ( G Ã, z Ã, G ) we have the following lemma:

Lemma 2. Let us consider a map G (mi , mÃi) over G Ã. It is constant on

the BRST orbits. Then G (mi , mÃi) takes the form

G (m i , mÃi) 5 G0(m i) 1 G1(m i)mÃi 1 . . . (3.3)

where G0 and G1 are maps on G . Indeed, since G (mi , mÃi) is constant on the

BRST fibers, then it projects into a map on G , i.e.,

P Ã(G(mi , mÃi )) 5 G0(m i ) (3.4)

and it decomposes into G0 and a term depending only on orbits parameters,
say mÃi. So, we have G(mi , mÃi ) 5 G0(mi ) 1 G1(mi )mÃi . Finally, equation

(3.3) and the nilpotency property of the operator Q enable us to get the

following proposition.

Proposition 4. A BRST-fixing condition on the manifold G Ãis equivalent

to a gauge-fixing condition on the manifold G up to a Q-exact term. Further-

more, if G(A, C ) is a BRST-fixing condition, then it takes the form
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G(A, C ) 5 G0(A) 1 {Q, L } (3.5)

where L is an arbitrary function of the field C . Indeed, the action of the
operator Q on (3.5) is expressed as

{Q, G(A, C )} 5 {Q, G0(A)} 1 {Q, G1(A) C } (3.6)

and we have

{Q, G1(A) C } 5 G1(A){Q, C } 1 {Q, G1(A)} C

5 G1(A){Q, [Q, A]} 1
- G1(A)

- A
C 2 (3.7)

The coefficient of G1 of the first term (in the last equation) is the Jacobi

identity, which is equal to zero. Furthermore, C 2 5 0 (because C is an

anticommuting parameter) and then we have

{Q, G(A, C )} 5 {Q, G0(A)} (3.8)

So, we conclude that G(A, C ) and G0(A) are equivalent up to a Q-exact term,

that is, G(A, C ) 5 G0(A) 1 {Q, L }. This means that the F constraint and

the G constraint defined, respectively, on G and on G Ãare cohomologically
equivalent and that the projection of the G-constraint surface on the manifold

G gives an F-constraint surface:

P Ã( S ÃG) 5 S F (3.9)

The splitting of the BRST operator Q 5 d 1 d implies the following

proposition.

Proposition 5. The effective action is cohomologically equivalent to the

classical action:

Seff 5 S0 1 {Q, L } (3.10)

Indeed the decomposed expression of Q gives

{Q, S0} 5 dS0 (3.11)

Furthermore , the gauge invariance of the classical action implies that

{Q, S0} 5 0 (3.12)

However, the BRST invariance is expressed as

{Q, Seff} 5 0 (3.13)

Consequently, we have the following corollary:
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Corollary 2. All the effective actions are equivalent. Indeed, if S 8eff is

an other effective action, then (3.10) implies that

S 8eff 5 S0 1 {Q, L 8} (3.14)

and we have

S 8eff 5 Seff 1 {Q, L 8 2 L }

5 Seff 1 {Q, L 9} (3.15)

Finally, this algebraic treatment effectively shows that the BRST symmetry
cannot be fixed at the quantum level and only the gauge symmetry can

be fixed.

4. YANG± MILLS THEORY

The effective action associated to the classical action of a free Yang±Mills

theory, when considering a gauge fixing condition F (A ) 5 0, is given by

(Gieres, 1988).

Seff 5 # d 4x 1 Lclass 2
1

2 l
F aFa 1 Ã a(QFa) 2 (4.1)

Let G(A, C ) 5 0 be a BRST-fixing condition; then (3.5) gives

G(A, C ) 5 F(A) 1 {Q, L } (4.2)

or

G(A, C ) 5 G0(A) 1 G1(A) C (4.3)

Then replacing the expression of the F constraint given by (4.2) and (4.3)

in equation (4.1), we get

Seff 5 # d 4x F Lclass 2
1

2 l
(G a(A, C ) 2 {Q, L a})(Ga(A, C ) 2 {Q, L a})

1 Ã a(QGa(A, C ) 2 {Q, L a}) G
5 # d 4x F Lclass 2

1

2 l
G aGa 1 Ã a {Q, Ga} 1

1

2 l
(G a {Q, L }

1 {Q, L a}Ga) 2 Ã a {Q, {Q, L a}} 1
1

2 l
{Q, L a} {Q, L a} G (4.4)
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Furthermore , the nilpotency of the operator Q implies that {Q, {Q, L }} 5
0 and

{Q, L } {Q, L } 5 C
- L
- A

C
- L
- A

5 1 - L
- A 2

2

C 2 5 0

since Q 5 C - / - A. Otherwise,

G(A, C ){Q, L } 1 {Q, L }G(A, C ) 5 (G0(A) 1 G1(A)) C
- L
- A

1 C
- L
- A

(G0(A) 1 G1(A) C )

5 G0 C
- L
- A

1 C
- L
- A

G0

5 G0{Q, L }

5 {Q, L 8} (4.5)

Then, S 8eff is expressed in terms of Seff as follows:

Seff 5 S 8eff 1 {Q, L 8} (4.6)

where

S 8eff 5 # d 4x F Lclass 2
1

2 l
G aGa 1 v a{Q, Ga} G (4.7)

5. CONCLUSION AND PERSPECTIVES

In this paper we have established explicitly the fiber bundle structure

of the manifolds G and G Ãassociated, respectively, to the gauge symmetry

and to the BRST symmetry. Furthermore, we have shown that the gauge-

fixing term (on G ) and the BRST-fixing term (on G Ã) are cohomologically

equivalent. Hence the projection of the second condition on G gives the first
one. This enables us to get the effective action as the sum of the classical

action and of a Q-exact term.

One can try to extend this formalism to topological field theories and

then consider the metric tensor on the two manifolds.
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